Menoufiya University Faculty of Engineering *Dept. Production Engineering* Final Exam (2014-15) - 2nd Term Date: May 24, 2015

Metallurgy and Engineering Materials Code: PRE Time: 3 hrs. Total Marks: 90 Marks

Solve the following questions:

Question no. 1

(15 marks)

- a) What type(s) of bonding would be expected for each of the following materials: Argon, Sodium Chloride, Aluminum Oxide, Aluminum, Diamond, and Magnesium?
- b) Differentiate, shortly, between edge and screw dislocations?
- c) Within a cubic unit cell, draw the following crystallographic planes and directions:

 $(20\overline{1}), (\overline{1}2\overline{1}), (3\overline{1}2) \text{ and } [101], [\overline{1}1\overline{1}], [\overline{2}11]$

d) Find planner density expressions for BCC (111) and (110) planes in terms of atomic radius R and compute the planner density values for these planes for iron where, R=0.124 nm.

Question no. 2

(15 marks)

- a) Calculate the atomic packing factor for the BCC and FCC crystal structures?
- b) For the tensile deformation of a ductile cylindrical specimen, describe changes in specimen profile to the point of fracture.
- c) Differentiate briefly between elastic and plastic deformations?
- **d)** What are the types of fracture in engineering materials? Describe the mechanism of crack propagation for each.

Question no. 3

R. L. Gwillyn y

(15 marks)

- a) What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature 2.5x10⁻⁴ mm of and a crack length 2.5x10⁻² mm of when a tensile stress of 170 MPa is applied?
- b) Define fatigue and specify the conditions under which it occurs.
- c) List four measures that may be taken to increase the resistance to fatigue of a metal alloy.
- d) Define creep, show the creep curve and specify when it becomes important.

Question no. 4	(15 marks)						
a) Explain the followings:	(10P.)						
- Joming test - Stress corrosion cracking	-Normalizing						
- DBTT - Cavitation damage	- Austempering						
- Martensite transformation - Glass strengthening	-Crevice corrosion						
- Process anneal							
b) calculate the composite modulus of polyester reinforced with under:	1 60% vol glass fibers						
i- Isostress ii- Isostrain loading conditions							
(Ep = 6.9 GPa, Eg = 72.4 GPa)	(5P.)						
Question no. 5	(12 marks)						
A and B are two elements partially soluble in the solid state.	An alloy 20% B starts its						
freezing at 900 °C by separating α. Another alloy 85% B star	ts its freezing at 800 °C by						
separating β . At 750 °C, the first alloy contains 2/3 of its wt.	as solid solution (90% A),						
while the second alloy contains 2/3 of its wt. as a liquid phase	e (80% B). Assume no						
solubility at 0 °C.							
1- Draw the phase diagram A-B.	(7p.)						
2- For the two alloys: 10% B and 7% B	(5p.)						
- Sketch their cooling curves and microstructures at 0 °C.							
- Is it possible to heat treat any (or both) of the two allo	ys? If yes, describe the						
steps in details	Total:12						
Question no. 6	(18 marks)						
a) Describe the steps undertaken in materials selection process.	(2P.)						
b) Give an industrial application for each of the following mater	ials: (4P)						
-Graphene - Magnesium - Zin	-PTFE						
- Nodular cast iron - Titanium - Arar	nid fiber						
c) A 1.05%C steel is slowly cooled from 900 °C to a temperature jus	t slightly below 723 °C.						
i- Calculate wt.% proeutectoid Cementite.							
ii- Calculate wt.% eutectoid Cementite and wt.% eutectoid ferrit	te. (6P.)						
d) Describe a method used to obtain a hard surface for each of th - A steel shaft (1.5% Cr, 1% Al) that works at temperature 350 ~	ne following cases: - 500 °C,						
- A gear (0.5% C) steel that should resist wear.	(6P.)						
GOOD LOOK							

•

This exam measures the following ILOs										
Question Number	Q1,Q6-a	Q4,Q3-a,b,c	Q2, Q6-d	Q3-d, Q6-d	Q6	Q5	Q3-d, Q5-b	These skills are measured		
Skills	a3-1	a19-1	b3-1	b6-1	h13-1	c1-1	017.1	else where		
Knowledge & Understanding Intelled		llectual Skills	015-1	Profes	sional Skills	Gener	al skills			